\qquad
\qquad
Absolute Value
\rightarrow Call: MATH \rightarrow NOm 1 abscl
Draw the graph of the equation $y=|x|$ from $-3 \leq x \leq 3 \rightarrow$ Intervals

Q Copy all the coordinates you can plot from $-10 \leq x \leq 10$ Graph the equation $y=|x+2|$
 Graph the equation $y=|x|+3_{p} 2$

\qquad Date \qquad
8A: Algebra 1
Period \qquad

Graphing Absolute Value

* Remember: Absolute value is the amount of units the number is away from 0 .
* Symbol: $|x|$

I. Absolute value function:

* $f(x)=|x|$ (called parent function)
* It is a V shaped graph whose vertex (minimum) is the origin $(0,0)$.
* Is it symmetric to the y-axis.
* Domain: Real numbers. Range: $y \geq 0$. (pos, y -values)
* This function is also considered a piecewise-defined function: $f(x)=\left\{\begin{array}{cc}-x & x<0 \\ x & x \geq 0\end{array}\right.$

$y=|x|$ or $f(x)=|x|$
The vertex is at $(0,0)$.
Note: The graph of $y=|-x|$ is the same as this one.

* Changing the coefficient of x will make the V wider or more narrow

* A negative coefficient outside the absolute value symbol will make the graph an upside down V. Therefore the vertex will now be a maximum point at the origin.

$y=-|x|$ or $f(x)=-|x|$
This function has -1 outside the $|\mid$ which makes the graph look "upside down" when compared with the original $f(x)$.
RReflectin over

$$
\text { the } x-a x i s
$$

Translating, Reflecting, and Scaling Graphs of Absolute Value Functions

Just as linear functions can be translated, reflected, or scaled, graphs of absolute value functions can also be manipulated by working with the graph of the absolute value function $y=|x|$.

For instance, the graph of $y=|x|-5$ is the graph of $y=|x|$ shifted 5 units down. The graph of $y=-|x|$ is the graph of $y=|x|$ reflected in the x-axis. The graph of $y=2|x|$ is the graph of $y=|x|$ stretched vertically by a factor of 2 , while the graph of $y=\frac{1}{2}|x|$ is the graph of $y=|x|$ compressed vertically by a factor of $\frac{1}{2}$.

Translation Rules for Absolute Value Functions If c is positive:
$\left.\begin{array}{l}\text { affects } \\ y-\text { The graph of } y=|x|+c \text { is the graph of } y=|x| \text { shifted } c \text { units up. } \\ \text { The graph of } y=|x|-c \text { is the graph of } y=|x| \text { shifted } c \text { units down. }\end{array}\right\rangle$ Translation $=$
For absolute value functions, there are two additional translations that can be done to the graph of $y=|x|$, horizontal shifting to left or to the right.

If c is positive:

$$
\begin{aligned}
& \text { effects } \\
& x-v^{\text {a }}
\end{aligned}\left\{\begin{array}{l}
\text { If } c \text { is positive: } \\
\text { The graph of } y=|x+c| \text { is the graph of } y=|x| \text { shifted } c \text { units to the left. }
\end{array}\right. \text { Tr on slatich = }
$$

Reflection Rule for Absolute Value Functions
The graph of $y=-|x|$ is the graph of $y=|n|$ reflected across the x-axis. Turned upside down (Rotation of 180°)
Scaling Rules for Absolute Value Functions
When $c>1$, the graph of $y=c|c|$ is the graph of $y=|x|$ stretched vertically narrower (u to $\mid c H$) by a factor of c.

- When $0<c<1$, the graph of $y=c|x|$ is the graph of $y=|x|$ compressed wider (decimal vertically by a factor of c.
* $\frac{\text { stretched vertically }}{\text { horizontal cumpressim }}$ is also called a

Q Compressed vertically; is alsocalled a

1) What will be the equation of the resulting graph if the graph of $y=|x|$ is shifted 4 units down?
A) $y=|x|+4$
C) $y=|x-4|$
(B) $y=|x|-4$
D) $y=|x+4|$
2) What will be the equation of the resulting graph if the graph of $y=|x|$ is shifted 8 units to the right? λ
(A) $y=|x-8|$
C) $y=|x|-8$
B) $y=|x|+8$
D) $y=|x+8|$
3) When compared to the graph of $y=|x|$, the graph of $y=|x|+1$ is
A) shifted down 1 unit
B) shifted to the right 1 unit
C) shifted to the left 1 unit
D) Shifted up 1 unit
4) Which equation represents the function shown in the accompanying graph?

$$
\text { up } 1
$$

[A] $\mathrm{f}(x)=|x|+1$
[B] $\mathrm{f}(x)=|x-1|$
[C] $\mathrm{f}(x)=|x+1|$
[D] $\mathrm{f}(x)=|x|-1$
5) Describe the translation, reflection, and /or scaling that must be applied to $y=|x|$ to obtain the graph of the given function:

$$
y=3|x|-5
$$

(1) narrower by a scale factor of 3
(2) Translated 5 units dower
6) Describe the translation, reflection, and /or scaling that must be applied to $y=|x|$ to obtain the graph of the given function

$$
y=-2|x+6|+1
$$

(1) Reflection over the x-axis
(2) narrower by a scale factor of 2
(3) Translated 6 units left and
7) The graph below represents $\mathrm{f}(x)$.

Which graph best represents $|\mathrm{f}(x)|$?
[A]

[C]

\#'s 8-9: Describe the transformation from the graph of $f(x)$ to the graph of $g(x)$.
8) $f(x)=|x|: g(x)=|x+4|=3$

Translated 4
units left and
3 writs down
9) $f(x)=|x| ; g(x)=|x=6|+2$

Translated 6 units right and 2 units up
\#'s 10-13: Write the equation of each absolute value function whose graph is shown,

14) Find the vertex of $y=|x-6|$. Is the vertex a maximum or minimum?

15) Find the domain and range of $y=-|x|+4$
$D: \lambda \quad(-\infty, \infty)$ or \mathbb{R} or All reals
$R: y(-\infty, 4]$ or $y \leq 4$

16) Tell whether the following graphs open up or down:
(a) $y=+\frac{1}{2}|x|$
(b) $y=+|x+5|$
(c) $y=-|x|+2$

\#'s 17-19: Match the function with its graph.
narrower
17) $f(x)=3|x|$

$+11-11$
18) $f(x)=-3|x| \quad C$
wider
19) $y=\frac{1}{3}|x| A$
A.

B.

\#'s 20- 22: Match the function with its graph.
20) $y=|\overrightarrow{x-2}|$
21) $y=|x|-2$

22) $y=|x+2|$

A.

B.

C.

