Algebra 1 - Formula & Information Sheet

	Relative error = measure-actual : % Fror = Relative • 100%	$y-y_1=m(x-x_1)$ point-slope form	horizontal change run $x_2 - x_1$
	Error in Measurement:	y = mx + b slope-intercept form	$m = \frac{\text{vertical change}}{\text{vertical change}} = \frac{\text{rise}}{\text{vertical change}} = \frac{y_2 - y_1}{\text{vertical change}}$
graph crosses x-axis.	reciprocals (flip over and negate)	Equations of Lines: $m = \text{slope}$	Slope: (rate of change)
Roots: where the	Perpendicular: slopes are negative	For inequality systems, graph.	x = abscissa, y = ordinate
symmetry:	Parallel: slopes are equal.		$x \ge -2$ mult/div by a negative.
-Axis o $x = -o$	Parallel and Pernendicular:	$v = x^2 - x - 6$ Linear Ouadratic:	$-4x \le 8$ of inequality when
$y = a(x-h)^2 + k$	8, 15, 17; 7, 24, 25	y + 3x - 9 eminiate one variable; or graph.	$-3x \le 8 + x$ change direction
$y = ax^{2} + bx + c$	Right Triangles only. $c' = a' + b'$		$8-3x \le 16+x$ Remember to
Parabola:	Pythagorean Theorem:	Systems:	Inequalities:
	$2\sqrt{2} + \sqrt{3} + 3\sqrt{2} = 5\sqrt{2} + \sqrt{3}$	(2) //(2) = 2) = 100000	$\frac{3}{3} + \frac{2}{2} = \frac{6}{6} + \frac{6}{6} - \frac{6}{6}$
$(2\sqrt{2})\cdot(3\sqrt{5}) = 6\sqrt{10}$	Add: Add like radicals only	$(x^2-3)(x+2)$ factor	4x 3x 8x 9x 17x
inside.	$\sqrt{50} = \sqrt{25 \cdot 2} = \sqrt{25 \cdot \sqrt{2}} = 5\sqrt{2}$	$x^{2}(x+2)-3(x+2)$ factor each	numerators:
and then multiply	Simplify: look for perfect squares.	$(x^3 + 2x^4) - (3x + 6)$ group	Get the common denominator, and add
Mult. multiply in front	Radicals:	A + CA VA	Add Fractions:
where $a > 0$ and $b > 1$	5. Find needed variable (x, /).	13 + 272 - 37 - 6 - F (2) - 7	$(a-b)^2 = a^2 - 2ab + b^2$
Growth: $y = ab^x$	4. Isolate needed variable (+, -).		(a+b) = a + 2ab + b
where $a > 0$ and $0 < b < 1$	3. Get needed variables on same side.	Factor by Grouping:	-x + 0x + 0
Decay: $y = ab^x$	2. Combine like terms on each side.	$(x-a)^2 = x^2 - 2ax + a^2$	$= x^2 + 6x + 8$
Growth/Decay:	1. Deal with any parentheses.	$(x+a)^2 = x^2 + 2ax + a$	$(x+4)(x+2) = x \cdot x + x \cdot 2 + 4 \cdot x + 4 \cdot 2$
Exponential	Solving Equations:	2 2 2 2 2	Multiple: (distribute or FOII)
since the denominator $= 0$.		$a^2-b^2=(a-b)(a+b)$	a-b=cd; $(a-b)/d=c$
difference when x	$5x^3$ is of degree 3 $7-x^{13}$	common factor) first. $ab + ac = a(b + c)$	a = b + cd; solve for c.
$\frac{3}{1}$ is undefined when $r = 7$	ponents	Look to see if there is a GCF (greatest	methods to solve.
ed:	Degree: Degree of Undefined:	Factoring:	Literal equations: Use regular equation
$a \cdot 0 = 0$	perty:	$(-x) = (4x) \qquad +-x \qquad (4x)$	Nepreseius distance
$a \cdot (1/a) =$	Inverse: $a + (-a) = 0$	42	Points distance $ [2,7] \leftrightarrow 2 \le x \le 7$
	Identity: $a + 0 = a$	$\int_{3}^{3} = \frac{\zeta_{3}}{\zeta_{3}} = \frac{\zeta_{3}}{\zeta_{3}} = \frac{\zeta_{3}}{\zeta_{3}}$	T = 7 $ C = 7$ $ C = 7$ $ C = 7$
	Distributive Property: $a(b+c) = ab + ac$		e value.
)+c $a(bc)=(ab)c$	Associative Property: $a+(b+c)=(a+b)+c$	$3^{\circ} = 1$ $(x^n)^m = x^{n \cdot m}$	A healing Value: Interval Notation:
ab = ba	Commutative Property: $a + b = b + a$		6.5 × 10.
MULTIPLICATION	ADDITION		Deletitie i totation.

Sequences:

explicit form: $a_n = 3n + 1$; $n \ge 1$ (integer)

recursive: $a_1 = 2$; $a_{n+1} = 2a_n$ (built on previous term)

Geometric: (x) 2, 6, 18, 54, ... Arithmetic: (+) 2, 5, 8, 11, ...

A set of ordered pairs in which each xassociated with it. element has only one y element

 $f(3) = 3 \cdot 3 + 4 = 13$ f(x) = 3x + 4

> Domain: x-values used; Range: y-values used Vertical Line Test: A function passes the vertical line test

Transformations:

-f(x) over x-axis; f(-x) over y-axis

f(x+a) horizontal shift; f(x)+a vertical shift f(ax) stretch horizontal; af(x) stretch vertical

Solve by factoring, completing the square, quadratic formula. Quadratic Equations: $ax^2 + bx + c = 0$ (Set = 0.)

Factoring:

$$x^2 - 5x + 6 = 0$$
 Set = 0.

$$(x-3)(x-2) = 0$$
 Factors.

$$x = 3$$
; $x = 2$ Roots.

Quadratic Formula:

κ II

 $-b\pm\sqrt{b^2-4ac}$

 $b^2 - 4ac > 0$ two real unequal roots $b^2 - 4ac = 0$ repeated real roots

 $b^2 - 4ac < 0$ two complex roots (a + bi)

Square root property: If $x^2 = m$, then $x = \pm \sqrt{m}$

Completing the square: $x^2 - 2x - 5 = 0$

- 1. If other than one, divide by coefficient of x^2
- Move constant term to other side x²-2x = 5
 Take half of coefficient of x, square it, add to both sides
- $x^2 2x + 1 = 5 + 1$
- 4. Factor perfect square on left side. $(x-1)^2 = 6$ Use square root property to solve and get two answers. $x = 1 \pm \sqrt{6}$

Data:

 $mean = \overline{x} = \frac{x_1 + x_2 + ... + x_n}{x_1 + x_2 + ... + x_n}$ (average); mode = most often (may be more than one)

quartiles divide data into 4 = parts. range = difference between the maximum and minimum values median = middle. Median best describes data if outliers exist.

Outliers: (values that are far away from the rest of the data)

Interquartile Range (IQR) = Q3-Q1.

Outliers are found above Q3+1.5(IQR) or below Q1-1.5(IQR)

Residual: y-distance between plotted point and line of best fit (regression)

Correlation Coefficient: (tells how well a regression equation fits the data) $-1 \le r \le 1$ Regression Equation: calculator's line of best fit for a scatter plot

Box Plot: Shows data distribution.

The closer to 1 or -1, the stronger the fit.

d Q3 Max 15 20

Standard Deviation:

the mean to the data. measuring spread of data and relationship of Standard deviation is a measure of variability; *Notation:* σ_x = population standard deviation

If σ_x is large, there is wide variance in data. If σ_x is small, data is close to mean.

If σ_x is zero, all data Normal Curve

Normal Curve.

Two-Way Tables:

	-	Contract of the last of the la			
ž	62	2	080	ĄLS	TOTALS
00	Y		5	ARCC	NOT PARCC
	3	1	55	8	PARCC
TOTALS Marginal frequency	707	NOT Appendix A	CCSS Appendix A		Joint frequency

$62/_{62} = 1.00$	$2/_{62} \approx 0.03$	60%,≈0.97	TOTALS
6/6=1.00	1/6 = 0.12	¥ ≈0.83	NOT PARCE
56/ ₅₆ =1.00	6 × 0.98 1/56 × 0.02	257 ≈ 0.98	PARCC
TOTALS	NOT Appendix A	CCSS Appendix A	relative frequency
γον	quency (Relative Fleducity (by low)	Conditional NE