Notice A graphing calculator and a straightedge (ruler) must be available for you to use w taking this examination.	When you have completed the examination, you must sign the statement printed at the of the answer sheet, indicating that you had no unlawful knowledge of the questions or ar prior to the examination and that you have neither given nor received assistance in answering the questions during the examination. Your answer sheet cannot be accepted if you fail to sig declaration.	Ine formulas that you may need to answer some questions in this examination are found end of the examination. This sheet is perforated so you may remove it from this booklet. Scrap paper is not permitted for any part of this examination, but you may use the blanks in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end booklet for any question for which graphing may be helpful but is not required. You may re this sheet from this booklet. Any work done on this sheet of scrap graph paper will <i>not</i> be score	etc. Utilize the information provided for each question to determine your answer. Note that dia are not necessarily drawn to scale.	This examination has four parts, with a total of 37 questions. You must answer all questions examination. Record your answers to the Part I multiple-choice questions on the separate a sheet. Write your answers to the questions in Parts II , III , and IV directly in this booklet. Al should be written in pen, except for graphs and drawings, which should be done in pencil. C indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, c	Print your name and the name of your school on the lines above. A separate answer sheet for Part I has been provided to you. Follow the instructions fro proctor for completing the student information on your answer sheet.	The possession or use of any communications device is strictly prohibited when ta this examination. If you have or use any communications device, no matter how bri your examination will be invalidated and no score will be calculated for you.	School Name	······································	Wednesday, January 22, 2020 — 1:15 to 4:15 p.m. only	ALGEBRA The University of the State of New York RECENTS HIGH SCHOOL EXAMINATION
ile 4 2 (2)	$\begin{array}{c} \text{end} \\ \text{wers} \\ \text{is} \\ \text{this} \\ \hline \begin{array}{c} \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ $	$\begin{array}{c} x \\ acces \\ acces \\ r \\ this \\ r \\ this \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 6 \end{array}$	rams 4 Which table could re	x this x Given $7x + 2 \ge 58$, we x swer(1) 6 x ork(2) 8 x arts,(2) 8	(1) $y = 64(15)^3$ (2) $y = 64(1 + .5)^3$	ing one-half of the playe fly, left after 3 rounds?	(1) 13 (2) 19	1 If $f(x) = 2(3^x) + 1$, v	Answer all 24 qu credit will be allowed answer. Note that dia choose the word or e the question. Record	-
(4) (4)	(3) x k(x) 2 2 3	N I O N X N 6 4 6 1X	present a function?	vhich number is <i>not</i> in the solution set? (3) 10 (4) 12	(3) $y = 64(13)^{0.5}$ (4) $y = 64(1 + .3)^{0.5}$	yred a badminton tournament. After each round, rs were eliminated. If there were 64 players at the ent, which equation models the number of players	(3) 37 (4) 54	that is the value of $f(2)$?	. Utilize the information provided for each grams are not necessarily drawn to scale. For greating that, of those given, best complete xpression that, of those given best complete your answers on your separate answer sheet.	Part I
								Use this space for computations.	receive 2 credits. No partial question to determine your cach statement or question, es the statement or answers . [48]	-

ALGEBRA I

Use this space for computations.

8 The shaded boxes in the figures below represent a sequence.

Use this space for computations.

If figure 1 represents the first term and this pattern continues, how many shaded blocks will be in figure 35?

(2) 148	(1) 55	
(4) 805	(3) 420	c

9 The of the function $f(x) = x^3$. - 912 arr

(2) 0 and 9	1) 9, only	The zeros of the function
(4) -3, 0, and 3	(3) 0 and 3, only	f(x) = x or are

 ${\bf 10}$ A middle school conducted a survey of students to determine if they spent more of their time playing games or watching videos on their tablets. The results are shown in the table below.

	Playing Games	Watching Videos	Total
Boys	138	46	184
Girls	54	142	196
Total	192	188	380

Of the students who spent more time playing games on their tablets, approximately what percent were boys?

(2) 56	(1) 41	- F F
		1
(4) 75	(3) 72	

Algebra I – Jan. '20

[OVER]

4

14 The equation V(t) = 12,000(0.75)^t represents the value of a motorcycle t years after it was purchased. Which statement is true?
(1) The motorcycle cost \$9000 when purchased.
(2) The motorcycle cost \$12,000 when purchased.
(3) The motorcycle's value is decreasing at a rate of 75% each year.
(4) The motorcycle's value is decreasing at a rate of 0.25% each year.

(2) $4 \pm \sqrt{5}$	$(1) - 4 \pm \sqrt{5}$	15 The solutions to $(x + x)$
(4) 1 and 7	(3) - 1 and -7	$(4)^2 - 2 = 7$ are

16 Which expression is *not* equivalent to $-4x^3 + x^2 - 6x + 8^9$ (1) $x^2(-4x + 1) - 2(3x - 4)$ (3) $-4x^3 + (x - 2)(x - 4)$ (2) $x(-4x^2 - x + 6) + 8$ (4) $-4(x^3 - 2) + x(x - 6)$

17 Which situation could be modeled as a linear equation?
(1) The value of a car decreases by 10% every year.
(2) The number of fish in a lake doubles every 5 years.
(3) Two liters of water evaporate from a pool every day.
(4) The amount of caffeine in a person's body decreases by ¹/₃ every 2 hours.

18 The range of the function f(x) = |x + 3| - 5 is (1) $[-5, \infty)$ (3) $[3, \infty)$ (2) $(-5, \infty)$ (4) $(3, \infty)$

Algebra I – Jan. '20

ত

[OVER]

Algebra I – Jan. '20

[6]

Use this space for computations.

Use this space for

Algebra I – Jan. '20	(1) I, only (3) (2) II, only (4) (2) II, only (4) (3) (2) II, only (4) (4) (4) (5) (2) II, only (4) (4) (4) (4) (5) (5) (5) (2) IRx - 6y = 14 (5) (2) IRx - 6y = 24 (4) (5) (2) IRx - 6y = 24 (5) (2) IRx - 6y = 24 (4) (5) (5) (5) (5) (5) (5) (6) (5) (6) (6) (6) (6) (6) (6) (6) (6	19 A laboratory technician used the fun her research. Consider the following I. $6(3)^{2m}$ II. $6(6)^{2n}$
<u>٦</u>	If and III and III 7 and solutions as the system 7 12 -9x - 3y = -21 2x + 3y = 12 3x - y = 7 x + y = 2 x - y = c x + y = 2 e modeled using the exponential the number of days since the cover the course of the first two $0 \le t \le 2$ $0 \le t \le 2$	ction $t(m) = 2(3)^{2m + 1}$ to model expressions: III. $6(9)^m$
[OVER]		Use this space for computations.
Algebra I – Jan. '20	(1) I and II, only (2) I and II, only (2) $I = 10^{23} + 10^{10}$	22 Given the following data se 65, 70, 70, 70, 70, 80, Which representations are
[8]	$\begin{array}{c} 1 \\ 75 \\ 80 \\ 85 \\ 90 \\ 95 \\ 90 \\ 95 \\ 100 \\ 10$	·t: 80, 80, 85, 90, 90, 95, 95, 95, 100 correct for this data set?

Use this space for computations.

\$ (F	numerical answ written in pen, c	ams are not necessarily drawn to scale. For all questions in t ver with no work shown will receive only 1 credit. All ai except for graphs and drawings, which should be done in pen
) 15 15	25 Graph $f(x)$ =	$= -\sqrt{x} + 1$ on the set of axes below.
efficient of 4 and a degree of 3?) $4x^4 - 3x^3 + 2x^2$) $2x + x^2 + 4x^3$		
		f(x)
		•

Use this space for computations.

 $a_{n+1} = 2a_n - 7$ $a_1 = 5$ ${\bf 23}$ A recursively defined sequence is shown below.

The value of a_4 is

(1) -9(2) -1ω 4

 ${\bf 24}$ Which polynomial has a leading cc

(2) $4 + x - 4x^2 + 5x^3$ (1) $3x^4 - 2x^2 + 4x - 7$ (3

Part II

Algebra I – Jan. '20

[14]	Algebra I – Jan. '20
	22a + 12 = 34
Combining like terms	8a + 12 = 34 - 14a
	8a + 12 = -3a + 3 + 31 - 11a
Given	4(2a+3) = -3(a-1) + 31 - 11a
(a - 1) + 31 - 11a to solve. Some of the steps and tate a property of numbers for each missing reason.	29 John was given the equation $4(2a + 3) = -3$ their reasons have already been completed. S

Algebra I – Jan. '20

Part III

Answer all 4 questions in this part. Each correct answer will receive 4 credits. Clearly

Algebra I – Jan. '20	State the l state the c the contex	Z]	35 The follov new home
	linear regression function, $f(p)$, that sale price, p . Round all values to the correlation coefficient of the data to f the problem.	umber of New Homes Available f(p)	Sale Price, p (in thousands of dollars)	ving table represents a sample of s available at that price in 2017.
20	o the	126	160	sale I
	imate rest h	103	180	prices,
	s the i undre	82	200	in th
	numb dth.	75	220	ousan
	r of r	82	240	ds of o
	lain w	40	260	follars
	hat thi	20	280	, and
	is means in	·		number of

Part IV

Algebra I – Jan. '20 [23]	Explain what each coordinate of the point of intersection means in the context of t	State the coordinates of the point of intersection.	Question 37 continued
	context of the problem.		

Tear Here

ALGEBRA I

- - -

Tear Here

High School Math Reference Sheet

	1 mile = 1.609 kilometers	1 mile = 1760 yards	1 mile = 5280 feet	1 meter = 39.37 inches	1 inch = 2.54 centimeters
	1 ton = 2000 pounds	1 kilogram = 2.2 pounds	1 pound = 0.454 kilogram	1 pound = 16 ounces	1 kilometer = 0.62 mile
1 liter = 0.264 gallon 1 liter = 1000 cubic centimeters	1 gallon = 3.785 liters	1 gallon = 4 quarts	1 quart = 2 pints	1 pint = 2 cups	1 cup = 8 fluid ounces

	-
Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A = \pi r^2$
Circle	$C = \pi d \text{ or } C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = rac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

[27]

Printed on Recycled Paper

Tear Here

ALGEBRA I

Algebra I – Jan. '20

Exponential Growth/Decay	Degrees	Radians	Geometric Series	Geometric Sequence	Arithmetic Sequence	Quadratic Formula	Pythagorean Theorem
$A = A_0 e^{k(t - t_0)} + B_0$	$1 \text{ degree} = \frac{\pi}{180} \text{ radians}$	1 radian = $\frac{180}{\pi}$ degrees	$S_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$	$a_n = a_1 r^{n-1}$	$a_n = a_1 + (n-1)d$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$a^2 + b^2 = c^2$

Tear Here

Tear Here