ALGEBRA I

Notice ...
A graphing calculator and a straightedge (ruler) must be available for you to use while
taking this examination.

 The formulas that you may need to answer some questions in this examination are found at the
end of the examination. This sheet is perforated so you may remove it from this booklet. are not necessarily drawn to scale. etc. Utilize the information provided for each question to determine your answer. Note that diagrams indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, heeld be written in sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work This examination has four parts, with a total of 37 questions. You must answer all questions in this A separate answer sheet for Part I has been provided to you. Follow the instructions from the
proctor for completing the student information on your answer sheet. Print your name and the name of your school on the lines above.

[^0]

$\mathbf{8}$ Which ordered pair below is not a solution to $f(x)=x^{2}-3 x+4$?
$\begin{array}{ll}\text { (1) }(0,4) & \text { (3) }(5,14) \\ \text { (2) }(1.5,1.75) & \text { (4) }(-1,6)\end{array}$

$$
\begin{aligned}
& 6 \text { Joy wants to buy strawberries and raspberries to bring to a party. } \\
& \text { Strawberries cost } \$ 1.60 \text { per pound and raspberries cost } \$ 1.75 \text { per } \\
& \text { pound. If she only has } \$ 10 \text { to spend on berries, which inequality } \\
& \text { represents the situation where she buys } x \text { pounds of strawberries and } \\
& y \text { pounds of raspberries? } \\
& \begin{array}{ll}
\text { (1) } 1.60 x+1.75 y \leq 10 & \text { (3) } 1.75 x+1.60 y \leq 10 \\
\text { (2) } 1.60 x+1.75 y \geq 10 & \text { (4) } 1.75 x+1.60 y \geq 10
\end{array} \\
& 7 \text { On the main floor of the Kodak Hall at the Eastman Theater, } \\
& \text { the number of seats per row increases at a constant rate. } \\
& \text { Steven counts } 31 \text { seats in row } 3 \text { and } 37 \text { seats in row } 6 \\
& \text { How many seats are there in row } 20 \text { ? } \\
& \begin{array}{ll}
\text { (1) } 65 & \text { (3) } 69 \\
\text { (2) } 67 & \text { (4) } 71
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { The third quartile is } \\
& \begin{array}{ll}
\text { (1) } 92 & \text { (3) } 83 \\
\text { (2) } 90 & \text { (4) } 71
\end{array}
\end{aligned}
$$

5 The box plot below summarizes the data for the average monthly high

10 The trinomial $x^{2}-14 x+49$ can be expressed as
$\begin{array}{ll}(1)(x-7)^{2} & \text { (3) }(x-7)(x+7) \\ (2)(x+7)^{2} & \text { (4) }(x-7)(x+2)\end{array}$

9 Students were askedto name their favorite sport from a list of basketball,
soccer, or tennis. The results are shown in the table below.

Use this space for
computations.
14 Which situation is not a linear function?
(1) A gym charges a membership fee of $\$ 10.00$ down and $\$ 10.00$ per
month.
(2) A cab company charges $\$ 2.50$ initially and $\$ 3.00$ per mile.
(3) A restaurant employee earns $\$ 12.50$ per hour.
(4) A $\$ 12,000$ car depreciates 15% per year.
징

13 Which of the quadratic functions below has the smallest minimum
value? Use this space for
computations.
(4)

ω	N	-	\bigcirc	-	\times
N	心	¢	G	N	\vec{x}

$\begin{array}{cc}(\mathrm{E}) \\ (\bar{z}+x)(\mathbb{G}+x)=(x) y & (\mathrm{~L}) \\ 9-x_{\bar{z}}+{ }_{\tau}^{x}=(x) y\end{array}$
the quadratic functions below has the smallest minimum

ㄱ

Use this space for
computations.

ω

$$
x_{0} \mathrm{I}+{ }_{\sigma^{x}} 8+{ }_{9}^{x}{ }_{z} \quad \text { III }
$$

19 Mrs. Allard asked her students to identify which of the polynomials

$$
\begin{array}{ll}
\text { I. } & 15 x^{4}-6 x+3 x^{2}-1 \\
\text { II. } & 12 x^{3}+8 x+4
\end{array}
$$

8I، aunf-I ${ }^{\text {e.tqos }}{ }_{\text {IV }}^{\text {IV }}$
Θ

$$
\begin{aligned}
& \text { I. } \quad \ell=\frac{1}{2} p-w \\
& \text { II. } \quad \ell=\frac{1}{2}(p-2 w) \\
& \text { III. } \quad \ell=\frac{p-2 w}{2}
\end{aligned} ~ \begin{array}{ll}
\text { Which responses are correct? } \\
\begin{array}{ll}
\text { (1) I and II, only } & \text { (3) I and III, only } \\
\text { (2) II and III, only } & \text { (4) I, II, and III } \\
24 \text { If } a_{n}=n\left(a_{n-1}\right) \text { and } a_{1}=1 \text {, what is the value of } a_{5} \text { ? } \\
\begin{array}{ll}
\text { (1) } 5 & \text { (3) } 120 \\
\text { (2) } 20 & \text { (4) } 720
\end{array}
\end{array} . \begin{array}{l}
\text { ? }
\end{array}
\end{array}
$$

23 Students were asked to write a formula for the length of a rectangle
by using the formula for its perimeter, $p=2 \ell+2 w$. Three of their
responses are shown below.
22 How many real-number solutions does $4 x^{2}+2 x+5=0$ have?
$\begin{array}{ll}\text { (1) one } & \text { (3) zero } \\ \text { (2) two } & \text { (4) infinitely many }\end{array}$
(2) an integer ≥ 0
 21 At an ice cream shop, the profit, $P(c)$, is modeled by the function
Use this space for
computations.
[บุュ๐)
 charts, etc. Utilize the information provided for each question to determine your answer: Answer all 8 questions in this part. Each correct answer will receive 2 credits. Clearly
indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs,

II ${ }^{1.18} \mathrm{C}$

Explain what 20 and 1.014 represent in the context of the problem

[81]

[^1]

［บ马ูO］			
чирәир	еұер әзәч enba uotssa．．	хәұиог әчъ ш！әп ．гәш！！әчң јо ұи	 ог әч7 әден⿱二小欠
	で	02	
	$\angle 9$	St	
	99	0ε	
	\downarrow ¢	Or	
	$9{ }^{\text {st }}$	$\varepsilon \vdash$	
	82	21	
	$9{ }^{\text {a }}$	$\angle 乙$	
		x＇soṇewarłew	
	sұuәpnłS џо әбеұиәэләд		

										-					,																					
													-																							
							-			-	,		-	-	-				-	-		-														

$\begin{aligned} & \text { S. } \\ & \text { S. } \\ & \text {. } \end{aligned}$	\bigcirc	$\frac{\underset{\sim}{0}}{\frac{0}{0}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	2 0 0 0 0 0 0 0 8 8 8	$\begin{aligned} & ? \\ & \stackrel{?}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \overparen{O} \\ & \stackrel{O}{0} \end{aligned}$								
$\begin{gathered} \underset{\sim}{2} \\ \\| \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{gathered} \stackrel{\rightharpoonup}{l} \\ \\| \\ \omega 1- \\ \stackrel{4}{6} \\ \stackrel{1}{2} \end{gathered}$	$\begin{gathered} \gtrless \\ \text { II } \\ \omega \mid A \\ \text { for } \end{gathered}$	$\begin{aligned} & \text { < } \\ & \text { ॥ } \\ & \text { H } \\ & \underset{\sim}{i} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\circ} \\ & \\| \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{gathered} \Omega \\ \\| \\ 4 \\ 4 \\ 0 \\ 0 \\ 11 \\ 10 \\ 6 \end{gathered}$	$\begin{aligned} & \Delta \\ & \\|_{i} \\ & {\underset{i}{n}}^{2} \end{aligned}$	$\begin{aligned} & \Delta \\ & 11 \\ & \stackrel{S}{2} \end{aligned}$	$\begin{gathered} \Delta \\ \\| \\ N 1- \\ \stackrel{2}{2} \end{gathered}$						

1 cup $=8$ fluid ounces
1 pint $=2$ cups
1 quart $=2$ pints
1 gallon $=4$ quarts
1 gallon $=3.785$ liters
1 liter $=0.264$ gallon
1 liter $=1000$ cubic ce

			$S_{n}=\frac{a_{1}-a_{1} r^{n}}{1-r} \text { where } r \neq 1$				$\begin{aligned} & \text { io } \\ & + \\ & \text { io } \\ & \text { in } \\ & \text { io } \end{aligned}$

entimeters
T

[^0]:

[^1]:

