I. Solving Equations Using Square Roots and Cube Roots

***On Calculator: $\sqrt{=}$

A) Review: Square roots and cube roots

Simplify the following:

1)
$$\sqrt{81}$$
 = 9

3)
$$\sqrt[3]{343} = \boxed{7}$$

5)
$$\sqrt[3]{\frac{125}{512}} = \frac{3\sqrt{125}}{3\sqrt{512}} = \frac{5}{8}$$
 6) $\sqrt{\frac{100}{400}} = \frac{\sqrt{100}}{\sqrt{400}} = \frac{10}{\sqrt{400}}$

6)
$$\sqrt{\frac{100}{400}} = \frac{\sqrt{100}}{\sqrt{400}} = \frac{10}{20}$$

reduce

B) Using Roots to Solve Equations

You can use roots to solve equations where a variable is raised to a power. Since taking the root is the inverse of raising to a power, you can simplify these types of equations by taking the root of both sides.

Ex's: Solve $x^2 = 16$

$$\sqrt{x^2} = \sqrt{16}$$

Solve: $x^3 = 8$

$$\sqrt[3]{x^3} = \sqrt[3]{8}$$

$$y = 2$$

**Remember:

 \sqrt{x} (square root) is the inverse of x^2 and $\sqrt[3]{x}$ (cube root) is the inverse of x^3

Now you try!

Solve each equation for x

1)
$$x^2 = \sqrt{144}$$

2):
$$\sqrt[3]{x^3} = \sqrt[3]{27}$$

3)
$$\sqrt{x^2} = \sqrt{49}$$

4)
$$3\sqrt{x^3} = 512$$

5)
$$\sqrt{x^2} = \sqrt{\frac{16}{49}}$$

6)
$$\sqrt[3]{x^3} = \sqrt[3]{\frac{8}{64}}$$

7)
$$x^{2}+5=105$$
 $-5-5$
 $\sqrt{x^{2}}=\sqrt{100}$
 $x=10$

8)
$$x^{3} + 50 = 3425$$

$$-50 - 50$$

$$3(x^{3} = \sqrt[3]{3375}$$

$$(x = 15)$$

9)
$$x^{2} - 200 = 200$$
 $1200 + 1200$
 $1200 + 1200$
 $1200 + 1200$
 $1200 + 1200$

10)
$$x^{2} - \frac{2}{3} = -\frac{2}{9}$$

$$+\frac{2}{3} + \frac{2}{3}$$

$$\sqrt{\chi^{2} - \sqrt{\frac{4}{9}}}$$

$$\sqrt{\chi^{2} - \sqrt{\frac{4}{9}}}$$

11)
$$x^3 + \frac{1}{2} = \frac{593}{686}$$

$$\frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{3}(x^3 - \frac{3}{12})$$

$$\frac{1}{3}(x^3 - \frac{3}{12})$$

12)
$$x^{2} + \frac{3}{4} = \frac{13}{16}$$

$$\frac{\sqrt{3}}{\sqrt{4}} - \frac{3}{4}$$

$$\sqrt{x^{2} - \sqrt{16}}$$

$$\sqrt{x^{2} - \sqrt{4}}$$

B/c No #

*** Can you take the $\sqrt{-64}$?

****Can you take the $\sqrt[3]{-64}$?

$$415! B/C (-4)^3 = -64$$

II. Word Problem Review

1) At Antonio's Pizza, a pepperoni pizza costs \$6.95. Extra toppings are available for \$0.50 each. If Greg bought a pizza for \$8.45, how many extra toppings, T, did he order?

2) Nikki bought a bag of jelly beans. She divided the jelly beans equally among herself and three friends. There was a total of 96 jelly beans in the bag, how many jelly beans (j) did each person receive?

3) Liz spent a total of \$44.88 at the mall. She has \$7.62 left. How much money, m, did Liz have when she arrived at the mall?

$$m - 44.88 = 7.62$$

 $t94.88 + 44.88$ [\$52.50)
 $m = 52.5$

***4) Melissa has 6 times as many quarters as Michelle. Together, they have a total of 896 quarters. How many quarters, q, does Michelle have?

$$q = \# of QS$$
 $q + 6q = 896$
 $q = 896$